
www.manaraa.com
 1

ALEX OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEM

SOUHEIR A. FOUAD
souheir@alex.eun.eg

AMANI A. SAAD
amani@alex.eun.eg

MOHAMED G. ELFEKY
mgsaied@ritsec2.com.eg

Computer Science and Automatic Control Department
Faculty of Engineering
Alexandria University

Alexandria 21544, Egypt

ABSTRACT

This paper describes the design and the
implementation of the ALEX Object-Oriented Database
Management System (OODBMS). The objective of this
project is to build an OODBMS that follows the standards
put forward by the Object Data Management Group
(ODMG). Not all the standard components are considered
in the current system but will be considered by the near
future. The system enables the user to define the object
database model through an Object Definition Language
(ODL), and to build queries about the data through an
Object Query Language (OQL). Also, the system enables
the user to write the object method code using the C++
language, and to call these methods through the OQL.
Furthermore, the system includes a graphical user
interface to facilitate all the steps the user must follow to
build an Object-Oriented Database System.

Keywords: Database Management System, Data
Definition Language, Object Definition Language, Object
Data Management Group, Object-Oriented Database
Management System, Object Query Language

1 INTRODUCTION

Object-Oriented Databases combine Object-
Oriented language capabilities with the storage
management functions of the traditional Relational
Databases. The lack of a standard for Object-Oriented
Database Systems was a major limitation to their
widespread use. The success of the Relational Database
Management Systems did not result from a higher level of
data independence or a simpler data model than previous
systems, but from the standardization that they offer. That
is why the Object Data Management Group put forward a
set of standards for Object-Oriented Databases [1].

Our objective in this project is to build an
OODBMS that follows the ODMG standards to be used as
a testbed for developing and evaluating different query
processing algorithms, indexing techniques, clustering
techniques, and data mining tools for Object-Oriented
Databases. There are a few commercial OODBMS’s
which support ODMG standards such as O2 and

OBJECTSTORE [7]. The ODMG standard, Release 1.2, is
composed of the following components:

• Object Model which is the common data
model to be supported by any OODMBS,

• Object Definition Language (ODL) which is a
specification language used to define the constructs
that conform to the Object Model,

• Object Query Language (OQL) which is a
declarative language for querying and updating
database objects, and

• C++ Language Binding which explains how
to write portable C++ code that manipulates the
database objects. This is called the C++ Object
Manipulation Language (OML).

This paper describes the design of the ALEX
OODBMS. It may serve as an interesting example for an
OODBMS that follows the standards of ODMG. The rest
of the paper is organized as follows. Section 2 describes
the Object Data Model. Section 3 describes the system
design and shows the interactions between the different
components of the system. Section 4 discusses the Object
Definition Language and the modifications made to the
grammar to facilitate the implementation of its interpreter.
Section 5 shows how to integrate methods for the object
types in the schema using C++ and how these methods are
compiled and linked to the ALEX system. Section 6
presents the Data Dictionary used to physically store the
Object Schema. Section 7 describes the Object Query
Language used to query the object database. Section 8
discusses the physical storage of the Database. Finally,
Section 9 summarizes the paper and presents different
work to be done in the near future.

2 THE OBJECT DATA MODEL

This Section describes the Object Model
supported by ODMG-compliant Object-Oriented Database
Management Systems. The Object Model specifies the
constructs that are supported by an OODBMS:

• The basic modeling primitives are the object
and the literal. Each object has a unique identifier. A
literal has no identifier.

• The state of an object is defined by the values
it carries for a set of properties. These properties can

www.manaraa.com
 2

be attributes of the object itself or relationships
between this object and one or more other objects.

• The behavior of an object is defined by the
set of operations that can be executed on or by the
object.

• Objects and literals can be categorized by
their types. An object is sometimes referred to as an
instance of its type.

• A database stores objects. A database is based
on a schema that is defined in ODL and contains
instances of the types (classes) defined by its schema.

The ODMG Object Model specifies what is
meant by objects, literals, types, operations, properties,
attributes, relationships, and so forth. An application
developer uses the constructs of the Object Model to
construct the Object Model of the application. The
following subsections will describe these constructs and
their specification.

2.1 Types (Classes)
The definition of a type (class) has two aspects:

an interface and one or more implementations. The
interface defines the external characteristics of the objects
of the type. These external characteristics are the
attributes describing the state of each object of the type,
and the operations that can be invoked on each object of
the type. The implementation defines the internal aspects
of the objects of the type. It consists of a set of methods.
The method is the body of the operation defined in the
interface. The separation between the interface and the
implementation is the way that the ODMG Object Model
reflects Encapsulation [2].

The ODMG Object Model supports Inheritance
relationships between classes; i.e., a class, called the sub-
class, inherits the same interface of another class, called
the super-class. The sub-class may add to the interface and
may have another implementation to the same operations
of the super-class. Hence, the ODMG Object Model
supports Polymorphism.

A type may have an extent which is the set of all
its instances (objects). Also, it may have one or more keys
which uniquely identify a specific object. The key is either
simple, consisting of a single property, or compound,
consisting of a set of properties.

2.2 Objects
An object is an instance of a class. It has an

identifier to be distinguished from other objects, a name
used by developers or users to refer easily to that object, a
lifetime to determine how the memory and the storage
allocated to objects are managed, and a structure which
may be atomic or not. There are two lifetimes supported
by the ODMG Object Model: transient and persistent. A
transient object is allocated memory by the programming
language run-time system when it is declared in a method,
and the memory is deallocated after the method returns.
On the other hand, a persistent object is allocated memory
and physical storage by the OODBMS run-time system,
and continues to exist on the physical storage. Hence,

persistent objects are sometimes referred to as database
objects.

2.3 Literals
Literals do not have identifiers. The ODMG

Object Model supports three literal types: atomic,
collection and structured. Atomic literals include the basic
data types such as Long, Short, Double, Boolean, Char,
String, Enum, … etc. Collection literals include Set, Bag,
List and Array. Structured literals include Date, Interval,
Time, and Timestamp. Also, the ODMG Object Model
supports the user-defined structures.

2.4 State and Behavior
The state of an object is determined by

the values of its properties. A property of an
object is either an attribute or a relationship. An
attribute is defined by its name and its type which
is in turn atomic, a collection or structured. A
relationship is defined between two types that an
object of one type refers to one or more objects
of the other type. The reference is made by the
object identifiers. The ODMG Object Model
supports only binary relationships. A relationship
has a name and a reverse path containing the
name of another relationship defined elsewhere.
In the definition of the later relationship, the
reverse path must contain the name of the former
relationship.

 The behavior of an object is specified as a set of
operation signatures. Each signature defines the operation
name, the name and the type of each argument, and the
return value type. In Object-Oriented terminology, we
refer to the implementation of an operation as a method.
Thus, an object type is defined by a set of attributes and a
set of relationships (constituting its state), and a set of
methods (constituting its behavior).

2.5 Example
Figure 1 presents an object-oriented database

schema using the class diagram of the Unified Modeling
Language (UML) notation.

This object-oriented database schema contains
three classes: “Person”, “Employee”, and “Department”.
“Employee” is a subclass of “Person” and so there is an
inheritance relationship from “Employee” to “Person”.
There are two bidirectional relationships between
“Employee” and “Department”, one indicates that a
“Department” instance has many “Employee” instances
working into, and the other indicates that a “Department”
is managed by one and only one “Employee”.

3 THE ALEX SYSTEM DESIGN

This Section describes the ALEX system design

and shows the interactions between its different
components. Clearly, as any DBMS, there are multiple
levels of users of the system.

www.manaraa.com
 3

The first level is the developer who builds the
database application, and the second is the user of the
application who manipulates the data using queries.

Figure 2 shows the two main components of the
entire system. They are the ALEX system and the ALEX
Dynamic Linking Library (DLL). The ALEX system is
used by the developer to build an Object-Oriented
Database model. The Object Schema is defined using
either the Graphical User Interface (GUI) or the ODL.
Also, the end user manipulates the database using OQL
statements. The developer must also write the file
containing the C++ code of the object types methods and
supply it to the system. The ALEX system automatically
generates two other files depending on the Object Schema
specified.

Those three files are compiled using a C++

compiler to generate the ALEX DLL. The ALEX DLL is
the library containing the object code of all the methods of
the object types in the schema to be dynamically linked to
the ALEX system at run time.

Figure 3 shows all the components of the ALEX
system. The user defines the Object Schema either by the
Graphical Interface or by writing an ODL file interpreted
by the ODL Processor. The Object Schema definition is
passed to the Schema Manager. The Schema Manager
builds this Object Schema by storing it in the Data
Dictionary and also generates the C++ header file and the
DLL main file.

User

GUI
OQL

Statement(s)

C++ Code File for
Methods

C++ Header File
ODL File

Database

C++ Compiler

Data
Dictionary

ALEX System

ALEX DLL

Figure 2: THE MAIN COMPONENTS OF ALEX

Person

name
id
tel
birth_date
gender

Employee

hire_date

hire ()
hire (dep_id)
fire (fire_date)

Department

id

1 *

into has

1 1

manages managed_by

Figure 1: CLASS DIAGRAM FOR AN OBJECT-ORIENTED DATABASE SCHEMA

www.manaraa.com
 4

The user may deal with objects, creating new

objects or querying the current objects data, using the
Graphical Interface or writing OQL statements
interpreted by the OQL Processor. The Object Manager is
the component that is responsible for dealing with objects
data through the Memory Manager. The Memory
Manager is responsible for dealing with the Data
Dictionary to retrieve the desired information required by
other components. It holds some of the most used
information, such as the inheritance graph, in memory.
Also, it is responsible for dealing with object data stored
in the object database. It uses the Disk Manager
intensively to handle the files on disk.

4 OBJECT DEFINITION LANGUAGE

The Object Definition Language (ODL) is a
specification language used to define the interfaces of the
object types that conform to the ODMG Object Model.
The ODL supports all semantic constructs of the ODMG
Object Model. It is programming-language independent
and is not intended to be a full programming language.

The ODL is a Data Definition Language (DDL)
for the object types. It defines the characteristics of the
types including their properties and operations. The ODL
defines only the signatures of the operations and does not
address the definition of the methods that implement those
operations. Each sentence of the ODL defines a type that
is either an interface (the abstract definition of an object),
a type (a structure or an enumeration) or a constant.

The complete BNF for the ODL is given in [1].

Some modifications are made to this grammar so that it
can be implemented using a recursive descent parser [3].
These modifications are left factoring and elimination of
left recursion described in [3].
Examples:
left factoring
Rule (8) :
Old : <interface_body> ::= <export> | <export> <interface_body>

New : <interface_body> ::= <export> <X8>
 <X8> ::= ∈ | <interface_body>

elimination of left recursion
Rule (17) :
Old : <and_expr> ::= <shift_expr> | <and_expr> & <shift_expr>

New : <and_expr> ::= <shift_expr> <X17>
 <X17> ::= ∈ | & <shift_expr> <X17>

The parser passes through the ODL file checking
its syntax and semantics. It extracts all the required
information about the Object Schema to pass it to the
Schema Manager. This information includes, for each
sentence, the definition type (interface, type, or constant)
and the definition name.

For the interface definition, the information
includes also the interface parents, keys, lifetime
(persistent or transient), attributes and the data type of
each one, operations and the return data type of each one,
parameters of each operation and the data type of each
parameter, and relationships and the reverse path of each
one. For the type definition, the parser checks whether this
type is structure or enumeration. For the structure type
definition, the parser extracts its members and the data
type of each one. For the enumeration type definition, the

Disk Manager

Memory Manager

Schema Manager

ODL Processor OQL Processor

Object Manager

Graphical Interface

OQL Statement(s)
GUI

C++ Code File for
Methods

C++ Header File

ODL File

Database

C++
Compiler

Data
Dictionary

ALEX DLL

User

Figure 3: ALL THE COMPONENTS OF ALEX

www.manaraa.com
 5

parser extracts its enumerators. For the constant
definition, the parser extracts its data type and value.

The parser handles a symbol table to prevent
duplication names in interfaces, types and constants. Also,
it prevents the duplication names in attributes of one
interface and the duplication operation signatures of one
interface. The parser also handles a relationship table to
ensure that each relationship is defined correctly. An
example of an ODL file is shown in Figure 4.

typedef struct DateType
{
 Short day ;
 Short month ;
 Short year ;
} Date ;

enum Gender { Male , Female } ;

interface Person
(
 extent people
 key (name , id)
)
{
 attribute String name ;
 attribute Long id ;
 attribute Struct Telephone { String no ; Enum Type { Home ,

 Work , Mobile } type ; } tel ;
 attribute Date birth_date ;
 attribute Gender gender ;
};

interface Employee : Person
()
{
 attribute Date hire_date ;
 void hire () ;
 void hire (in Unsigned Short dep_id) ;
 boolean fire (out Date fire_date) ;
 relationship Department manages

 inverse Department :: managed_by ;
 relationship Department into

 inverse Department :: has ;
};

interface Department
(

key (id)
)
{
 attribute Unsigned Short id ;
 relationship Employee managed_by

 inverse Employee :: manages ;
 relationship Set<Employee> has

 inverse Employee :: into ;
};

Figure 4: AN EXAMPLE OF AN ODL FILE.

5 INTEGRATING METHODS

As outlined before, The object behavior is a main
issue in Object-Oriented modeling. The object behavior is
modeled using operations. A method is the
implementation for an operation of a specific object type.

The problem about allowing the user to write the
object methods is that, when the user modifies one of the

methods or modifies the Object Schema by deleting or
adding new methods, the system must dynamically link
the new methods, relink the modified methods, and
remove the deleted methods. In order to accomplish that,
the system must contain a linker. Although it is the most
efficient solution, it is hard to be implemented as it
requires a detailed study of the operating system.

The technique we used to support methods in our
system is to generate a dynamic linking library (ALEX
DLL) containing all the methods of all the object types of
the current schema. This library is based on the concept of
the Dynamic Linking Library (DLL) introduced by
Microsoft Windows. The DLL functions are linked only
when they are called from another application. When a
function in the DLL is modified, all what is done is the
recompilation of that DLL, and hence, the application is
independent of the version of the function it calls.

Clearly, any application must be independent of
the implementation of the functions it calls. Thus, the
ALEX system must be independent of the name of the
object type and the names of its methods; i.e., independent
of the Object Schema which may be modified by the user
anytime. Thus, the ALEX DLL, which contains all the
methods of the object types in the Object Schema, will
contain only one function to be called from the ALEX
system. This function, called the DLL main function, is the
one that is responsible for calling the required method
from the required object type. The input parameters of this
function are the object type name, the object name, the
method name and a list of the values of the parameters of
this method.

When the user defines a new schema, the Schema
Manager generates automatically three files written in
C++. They are (i) a header file defining the classes and the
data types of the schema, (ii) a skeleton source code file
ready for the user to write the body of the methods, and
(iii) the main file of the DLL which contains the DLL
main function. Figure 5 shows an example of those files
generated for the example in Figure 4.

Now that the ALEX DLL system, which consists
of the header file, the code file and the main file, is ready
for compilation, it is compiled and the DLL file is
generated. If the user modifies any method or modifies the
Object Schema, the ALEX system modifies the header
file, the code file and the DLL main function, and the
ALEX DLL must be recompiled.

The ALEX system is now ready for calling any
object method. It calls the DLL main function providing
the class name, the object name, the method name and a
list of the values of its parameters. This function calls the
appropriate method and returns to the ALEX system the
same value returned from the method.

By this approach, the ALEX system is
independent of the Object Schema and the code of the
methods.

www.manaraa.com
 6

// File : SampleSchema.h
// Created by : ALEX OODBMS
// Description : The header file of the schema.
// Date : Friday, 11 December, 1998
// Contents : The classes and the data types definitions.

typedef struct DateType
{
 short day ;
 short month ;
 short year ;
} Date ;

typedef enum Gender { Male , Female } ;

class Person
{
 // Attributes
 CString name ;
 long id ;
 struct Telephone
 {
 CString no ;
 enum Type { Home , Work , Mobile } type ;
 } tel ;
 Date birth_date ;
 Gender gender ;

 // Operations

 // Relationships
} ;
typedef Set<Person> people ;

class Employee : Person
{
 // Attributes
 Date hire_date ;

 // Operations
 void hire () ;
 void hire (unsigned short dep_id) ;
 BOOL fire (Date &fire_date) ;

 // Relationships
 Department manages ;
 Department into ;
} ;

class Department
{
 // Attributes
 unsigned short id ;

 // Operations

 // Relationships
 Employee managed_by ;
 Set<Employee> has ;
} ;

Figure 5a: THE HEADER FILE.

6 DATA DICTIONARY

The Data Dictionary is a file in the secondary
storage to describe the Object Schema of the DBMS. It is
used by the OODBMS in structuring databases and at run
time to guide access to databases.

// File : SampleSchema.cpp
// Created by : ALEX OODBMS
// Description : The code file.
// Date : Friday, 11 December, 1998
// Contents : The skeleton of the methods to be completed by the user.

#include “SampleSchema.h”

void Employee :: hire ()
{
}
void Employee :: hire (unsigned short dep_id)
{
}
BOOL Employee :: fire (Date &fire_date)
{
}

Figure 5b: THE CODE FILE.

// File : DLLmain.cpp
// Created by : ALEX OODBMS
// Description : The DLL main file.
// Date : Friday, 11 December, 1998
// Contents : The DLL main function.

#include “SampleSchema.h”

BOOL InvokeMethod (CString ClassName , CString ObjectName ,
 CString MethodName , void* Parameters , void* ReturnValue)
{
 if (ClassName == “Person”)
 {
 return False ;
 }
 else if (ClassName = = “Employee”)
 {
 object = GetObject (ObjectName) ;
 if (MethodName = = “hire”)
 {
 if (Parameters)
 {
 object.hire (Parameters[0]) ;
 return True ;
 }
 else
 {
 object.hire () ;
 return True ;
 }
 }
 else if (MethodName = = “fire”)
 {
 object.fire (Parameters[0]) ;
 return True ;
 }
 }
 else if (ClassName = = “Department”)
 {
 return False ;
 }
 else { return False ; }
}

Figure 5c: THE DLL MAIN FILE.

There are two alternatives to implement the data
dictionary. The first is to design a new format for this file;
the second is to use a well-known format. Clearly, the
second alternative is better especially when using a well-
known DBMS file format and dealing with it through
ready-made functions supporting Call-Level Interface

www.manaraa.com
 7

(CLI). We chose Microsoft Object DataBase Connectivity
(ODBC) which contains the operations to access data in
any database having an ODBC driver. These operations
include handling tables and records, and transaction
management. They allow any application to be
independent of the DBMS used. We chose here Microsoft
DataBase (MDB) file format for two reasons. The first is
its widespread use and the second is that it gives us the
facility to change the database file name dynamically at
run time. Clearly, the ALEX system needs to change the
database file name at run time in order that one user may
transfer from one Object Database Model to another one
at the same session.

Figure 6 illustrates the Extended Relationship
Diagram (ERD) of the data dictionary tables.

7 OBJECT QUERY LANGUAGE

The Object Query Language (OQL) is a complete
and simple language used to query the object database of
the ALEX system. It supports the ODMG data model. It
deals with complex objects without privileging the set
construct and the select-from-where clause. The design
principles, the main features and the complete BNF of this
language are fully described in [1].

As in the ODL, some modifications are made to
the grammar so that it can be implemented by using a

recursive descent parser [3]. These modifications are left
factoring and elimination of left recursion.

The parser passes through the OQL statement to
check its syntax and semantics. It extracts all the required
information about the query and passes it to the query
processor which is responsible for executing the query.
First of all, the parser determines the query type. The
parser distinguishes four main query types: literal,
construction, aggregate, and selection. A literal query is
a constant value (numerical, string, character, or
enumeration). A construction query constructs an object
or a type (structure or collection). Construction queries
are either transient (for types and transient objects) or
persistent (for persistent objects). An Aggregate query
contains an aggregate function to be calculated. A
selection query is a select-from-where SQL-like query.

The query processor executes the query

according to its type. For the literal queries, the query
processor returns the literal value. For the construction
queries, it checks the type to be constructed whether it is
persistent or transient, and if it is persistent, the query
processor creates this object in the physical storage and
returns the Object Identifier (OID) value created for that
object. If the type to be constructed is transient (set, list,
bag, array, structure or user-defined type), the query
processor returns a value according to its type. For the
aggregate queries (count, sum, min, max, … etc), the
query processor evaluates the specified function and
returns the evaluated value.

Relationship

Key Attribute Method

Parameter

Class

Data Type Constant

Enumerator
Member

1
1 1

2

M

M

M M

M

N

M

N

M N

M 1
N

M

1

M

1 1

M M

M N

returns

inheritance

has

N

M

of

of
N

M

Figure 6: THE ERD OF THE DATA DICTIONARY

www.manaraa.com
 8

For the selection queries, the query processor
retrieves the object identifiers of all the objects of the
classes specified in the from clause, and then filters these
objects according to the where conditions, and finally
projects only the required properties according to the
select clause. The selection query is written in the same
way as the selection query in the traditional SQL (select-
from-where clause). Also, OQL supports the path
expressions allowed in the object-oriented languages. A
path expression uses the “.” or “��” notation to navigate a
complex object to get its internal properties.

Figure 7 shows some examples for OQL
statements for the Object Schema of Figure 4. Those
examples outline the various features of OQL.

Employee (name: “Ahmed” , id: 123123
 , tel: Telephone (no: “596-0330” , type: Home)
 , birth_date: Date (day: 29 , month: 8 , year: 1976)
 , gender: Male , into: Department (id: 1))

First (Select e From Employee e Where e.name = “Ahmed”)

Select e.name From Employee e , Department d
Where (e.into = d) And (d.id = 1)

Select e.name From Employee e Where e.into.id = 1

Select e.name From Employee e Where e.birth_date.year > 1970

Figure 7: SOME EXAMPLES OF OQL STATEMENTS.

The first OQL statement constructs a new object
of the class Employee having the specified properties.
When the query processor executes this statement, it will
recognize 13 queries (since the OQL BNF is recursive).
They are “Ahmed” (literal), 123123 (literal), “596-0330”
(literal), Home (literal), Telephone(…) (transient
construction), and so on. The last recognized one is
Employee(…) (persistent construction). Note that the
query Department (id: 1) is a persistent construction
query and so the query processor creates a new object of
the class Department in the physical storage in addition to
the new object of the class Employee. Note also that the
query processor takes care of the relationships between
classes, and so, the query processor will update the value
of the property has for the created Department to contain
the object identifier value of the created Employee since
Department::has is the inverse traversal path of the
relationship Employee::into.

The second statement selects the first element in
the Employee class having name “Ahmed”. This statement
shows how to combine an aggregate function first with a
selection query. This simple selection query returns the
object identifier value of the specified object. The third
statement retrieves the names of the employees in the
department whose id is 1 using an explicit join. The fourth
statement shows how to write the same query using a path
expression which represents an implicit join which is an
advantage of the object-oriented data model. The last one
retrieves the names of the employees born after 1970. It
shows that a path expression may contain a property of a
class as well as a property of a user-defined structure.

8 PHYSICAL STORAGE

There are two standard approaches to physically
store the object-oriented database. (i) to map it to an
underlying relational database system, or (ii) implement
an advanced storage server that offers more complex
structures than flat relations [9].

Here, we considered the first approach since it
offers the advantage that one could rely on established,
matured and portable technology. On the other hand, it is
unlikely to obtain a good performance since the complex
structures of the object-oriented database schema have to
broken into small pieces in order to be stored in flat
relations. Hence, queries to the object-oriented database
have to be mapped into large joins queries to the relational
database. Although the second approach has a superior
performance due to the flexible physical database
organization that allows for efficient query processing, it
has the obvious disadvantage that one has to implement a
new storage manager with more powerful capabilities for
complex structured data, which is intended for the future
work in the ALEX system but is not currently available.

The relational mapping of the object-oriented
database contains two main relations, one for the objects
and the other for the values of the properties of the
objects. Just like the data dictionary, the relational
database used is Microsoft DataBase, and dealing with it
is done through Microsoft Object DataBase Connectivity
(ODBC). The ERD of these relations is shown in Figure 8.
Note that OID stands for the object identifier.

Object Property

Class
1 1

M

M

M N
Value

OID

Figure 8: THE ERD OF THE DATABASE

www.manaraa.com
 9

9 SUMMARY AND FUTURE WORK

In this paper, we described the main issues in the
design of an OODBMS called ALEX that follows the
standards of ODMG, Release 1.2. We illustrated the
variant system components design. We presented the
implementation issues encountered in designing the ODL
parser, OQL parser, and the Data Dictionary. We
investigated a new approach to easily integrate methods
into the Object-Oriented Database system.

In the future, a query optimizer can be added to
the system above the query processor to optimize the
query execution which is still an open area for research in
Object Oriented Databases. Furthermore, to be a full
DBMS, ALEX should include Recovery Management,
Transaction Management and Concurrency Control
techniques. Hence, we will add these important features to
ALEX by the near future.

Data Mining techniques are very rare for Object-
Oriented Databases, and so we will consider extending the
features of ALEX to support data mining. We are now in
the process of developing a data mining query language
for Object-Oriented Databases.

ACKNOWLEDGEMENT

We are grateful to Dr. Walid G. Aref who guided
us through all the phases of this work supplying us by
references and, more importantly, advises. Also, we wish
to express our particular thanks to Ghada M. Badr who
participated in the implementation of the system.

REFERENCES

[1] R.G.G. Cattell. The Object Database
Standard: ODMG-93 (Release 1.2). Morgan
Kaufmann Publishers, Inc. San Francisco, California,
1996.

[2] E. Bertino and L. Martino. Object-Oriented

Database Systems. Addison-Wesley Publishing
Company, 1994.

[3] Alfred V. Aho, Ravi Sethi, and Jefrey D.
Ullman. Compilers Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, 1986.

[4] Amani A. Saad, and Ghada M. Badr. The
ALEX Object Manager. In Proceedings of ISCC’97:
Second IEEE Symposium on Computers and
Communications, pages 200-204, Alexandria, Egypt,
July 1997.

[5] Mohamed G. Elfeky, and Ghada M. Badr.
ALEX Object-Oriented Database Management
System. Computer Science and Automatic Control

Department, Faculty of Engineering, Alexandria
University. Technical Report, 1997.

[6] F. Bancilhon, C. Delobel, and P. Kanellakis.
Building an Object-Oriented Database System: The
Story of O2. Morgan Kaufmann, 1992.

[7] Peter Kueng. Comparison of ten OODBMS’s.
The Swiss Computer Magazine OUTPUT, pages 60-
63, June 1994.

[8] M. Kifer, W. Kim, and Y. Sagiv. Querying
Object-Oriented Database. In Proceedings of 1992
ACM-SIGMOD Int. Conf. Management of Data,
pages 393-402, San Diego, California, June 1992.

[9] Marc H. Scholl. Physical Database Design for
an Object-Oriented Database System. In Johann C.
Freytag, David Maier, and Gottfried Vossen, editors,
Query Processing for Advanced Database Systems,
pages 420-447, Morgan Kaufmann, 1994.

[10] J. Han, Y. Fu, W. Wang, K. Koperski, and O.
Zaiane. DMQL: A Data Mining Query Language for
Relational Databases. In 1996 SIGMOD'96 Workshop
on Research Issues on Data Mining and Knowledge
Discovery (DMKD'96), Montreal, Canada, June 1996.

